工作

2025年1月19日 (日)

IC-705にHL-62Vを繋ぐ

144MHzリニアアンプHL-62Vを入手した。IC-705と一緒に使う。

Pxl_20250119_001345689_small

HL-62VはFMモードではSEND信号配線をしなくても送信信号が入ってくれば送信モードになる。

Hl62v

回路図を見るとTX信号を検波してトランジスタQ4をONにしているようだ。これでリレーを動かすトランジスタを制御して送信ONになるわけだ。ただし、この検波が動作するのはFMの時でSSBではそうはならない。そもそもSSBは搬送波がないからPTTを押しても検波する信号が出ないからだ。

SSBで送信ONにするには外部から送信制御をしなければならない。で、HL-62Vには外部からリレーを動かす、つまり送信ONにする2つの方法を備えている。

① Q4をONにする。これには検波出力と同等の+DCを外から加える。

② Q4の代わりをさせる。これにはQ4とパラレルにスイッチ動作をさせてリレーを動かすスイッチを制御する。

この二つの動作をサポートするためにHL-62Vはリモートコネクタを供えている。Photo_20250119124701

1ピンに+DCを加えてQ4をONにするか、4ピンをショートすることでQ4の動作を肩代わりするかだ。

さてさて、IC-705のSEND信号はどうなっているかというと、SEND入出力となっていて、仕様は以下だ。

  • LOWレベルを検知すると送信状態になる(外部機器から制御される)
  • PTTを押すとLOWレベルになる(外部機器を制御する)

おそらくオープンコレクタ出力がプルアップされていて、受信状態ではそのレベルをモニタしていて、PTTが押されるとオープンコレクタが閉じる(ONになる)んだと思う。だったら、このSEND信号を4ピンに繋げばIC-705でHL-62Vの送信を制御できると思う。

ここまでをまとめるとこんな等価回路になると思う。HL-62Vは通常はリレーに通電されているけれど、検波信号が入ってくるとQ4がONになってQ6がOFFになり、Q7がOFFになる。IC-705側にもオープンコレクタQがあって、このQ4とパラレルに動作するわけだ。02_20250120085201

で、その通りに結線してみた。そうすると、SSBでは期待通りの動き(PTTを押せば送信ON、離せば送信OFF)をしたが、FMだとPTTを話しても送信ONのままで、受信状態に戻らない。これは困る。。。

で、なんでなんだろう?って考えてみた。恐らく考えられるのはIC-705がSEND入出力のLOWを検知すると送信することに原因があるんだと考えた。その仕組みは以下だ。

  1. PTTを押してIC-705がHL-62Vのリモートコネクタの4ピンをLOWにする(電流を吸い込む)。
  2. 同時にFM信号が入ってきてQ4もONになる。つまりQ4も上記4ピンをLOWにするわけだ。
  3. PTTを離すとIC-705は4ピンをLOWにするのをやめて、受信状態になる。
  4. が、電波が止まってからQ4がOFFになるまで若干のタイムラグが発生し、その瞬間は上記4ピンはQ4によってLOWになった(Q4が電流を吸い込んだ)まま。
  5. 受信状態になったIC-705がそのレベルをSEND入出力でLOWと検知してしまうので、自動的に送信状態にもどってしまう。

つまり、PTTが離されても検波信号がなくなってQ4がOFFになるまでの遅れ時間のお陰で送信が止まらなくなるというわけだ。ループしちゃてるわけだね。

じゃあどうするか。。。。ちょっと考えた。

IC-705がリモートコネクタの4ピンをLOWにするときは電流はIC-705側に向かって流れる(吸い込む)。一方、IC-705が受信状態の時にHL-62VのQ4がONになった場合は電流はHL-62V側に向かって流れる(Q4が吸い込む)。だったら、HL-62V側に流れる電流を遮断してやればIC-705はSEND入出力をHIGHのままに保てるんだろう。これをまとめると以下の等価回路になって、IC-705のSEND入出力にIC-705に順方向にダイオードを入れている。
11_20250120085201

で、IC-705のSEND入出力と上記4ピンとの間に、IC-705に向かて順方向にスイッチングダイオード(手持ちであった1N4148)を入れてみた。かっこよく仕上げたかったのでコネクタ内に入れてみた。

Pxl_20250119_025258972mp_small

ダイオード部分を熱収縮チューブで覆う。

Pxl_20250119_025701948mp_small

コネクタカバーをかぶせて完成。

Pxl_20250119_025753654mp_small

結果は期待通り。Q4がONになって電流を吸い込もうとしてもIC-705からは電流が流れない(ダイオードがそれを許さない)ので、IC-705はHIGHレベルを維持することができて、ループしなくなった。

Pxl_20250119_033834044_small

あとはJARDへの認定申請をして総務省申請LITEで変更申請をすることになる。でも認定料が5,500円。ちょっと高いんじゃない???

でもまぁ、めでたし、めでたし。

2024年8月16日 (金)

モクソン・ターンスタイル アンテナの製作

アマチュア無線ISSのパケット通信用(145.825MHz)にモクソン・ターンスタイル(Moxon Turnstile)アンテナを製作したのでその記録。

最終的に出来上がったモクソン・ターンスタイル アンテナ。かっこいいー。

Img_9090_small

今回製作したモクソン・ターンスタイル アンテナはTHE ARRL HANDBOOK 2017(21.65)に掲載されていたデータを元にしたものだ。以下の構成でアンテナペアを用意した。

Photo_20240816152001

HANDBOOKの記載の通りにMatching lineとPhasing lineも製作した。Photo_20240816152201

まずこのMatching lineの意味だけれども、JI0VWLさんのブログを参照させていただいて以下の意味と理解した。

Q

75Ωケーブルに50Ωアンテナを付けた場合、その正規Zは0.67になる。これに1/4λケーブルをつなぐとスミスチャート上で反時計方向に180度0.67は回転するので正規Zは1.5になる。これに特性インピーダンス75Ωを掛けると112.5Ωになる。これを並列につなぐと56.25Ωになる。50Ωぴったりとはいかないけれど、ほぼ50Ωとなり特性インピーダンス50Ωのケーブルで給電できるわけだ。

一般的にダイポールアンテナは75Ωと言われているけれど、このモクソンアンテナは50Ωになるらしい。したがってこの方法で良いらしい。

次にPhasing lineについてだけど、二つのモクソンアンテナの位相を90度ずらすことで指向性が円形になるらしい。言い換えるとアンテナ上で位相が回転するというこのようだ。

Photo_20240816153001

モクソンアンテナはリフレクターとペアになっているので上方に輻射され、さらに水平面は円形になる。つまりドーム型の指向性を持つということで衛星通信に向いているのだそうだ。

HANDBOOKではエレメント径を3/16inchで計算されていたので、約5mm径のエレメントを探した。結局加工性も考えて直径5mmのアルミパイプをビバホームで調達した。

問題はちゃんと曲げられるか。試してみたところ、曲げ方によってはクラックが入ってしまうことがわかった。

Img10201_hdr_small

そこでアルミパイプにガムテープを巻いて、ゆっくりと曲げてみたところ、クラックが入らないで曲げられることがわかったのこの方法で曲げてみた。

Img10203_small
Img10204_small

アンテナエレメントの次はケーブル製作。50ΩケーブルとしてRG-58A/G、75Ωケーブルとして3C-2Vを調達した。のりしろを考慮して寸法に合わせてケーブルを用意し50Ωケーブルから2本の75Ωケーブルに分岐する部分を半田付け。熱収縮チューブを通したうえで芯線の半田付け。その後熱収縮チューブで被覆。その上にビニールテープを巻き、網線部分の半田付けを行った。

Img10639_small_20240816154101 Img10641_small Img10643_small_20240816154101

Phasing lineの接続も同様に行った。

Img10644_small

給電部分のエレメントはダイソーのタッパー内に構成した。

Img10648_small

アルミパイプに1.6mmの銅線(VVF1.6mmの銅線)を入れて圧着した。エレメントはケーブル固定用のプラスチック部品で固定した。Phasing lineはタッパー内でループさせた。これに蓋を被せて防水するので同軸ケーブル端は防水処理はしていない。

組み上げた様子はこんな感じ(それにしても騒々しい部屋だね)。

Img10649_hdr_small

給電部分のタッパーとリフレクター部分のタッパーは塩ビのパーツを使って固定した。上下エレメント間の間隔保持はセブンイレブンの割りばしにて固定。固定は結束バンドで、後からビニールテープを巻いて補強した。

全体を組み立ててみた様子はこんな感じ。

Img10652_small

Rig Expertで特性を計ってみた。とんでもない特性ではなく、とりあえず使えるレベルになっている。

15082024_141012 15082024_141616 15082024_141519

屋根に上げてみた。とりあえずマストへは結束バンドでの仮固定で、大きな作業変更に対応できるようにしておいた。

Img10656_hdr_small Img10659_hdr_small

実機でSWRを計ってみた。1.5ということで、使えるレベルにあると判断。

Img10658_small

これで実際にISSからの電波を受信し、実際にパケットを送ってみた。今までの2段GPに比べるとずっといい感じだ。とにかくGPで感じていた輻射角を感じさせない。

そこで常時設置に耐えられるように保持機構を作り直した。

塩ビパイプ接続部分はM5ネジで固定した。

Img10673_small

マスト固定用に金具を取り付けた。

Img10671_small

全体はこんな感じになった。かなりしっかりした構造になった(と思う)。

Img10674_small

もう一度構造のおさらい。

Img10668_small

エレメントはホームセンターで売っている電線固定部品(5mmケーブル用)で固定。タッパーにT字塩ビをM5.5のネジで固定。ケーブルがタッパーから抜けないように結束バンドをケーブルに巻き付け。Phasing lineはタッパー内に収容。

リフレクター側のタッパーもT字塩ビにM5.5ネジで固定。

Img10670_small

アンテナユニットに先ほど補強した保持機構を取り付けた様子。なかなかかっこいいー。

Img10677_small

アンテナ取り付けが完了した様子。

Img10683_hdr_small
Img10680_hdr_small

これでISS通信が楽しめる。

めでたし、めでたし。

2024年4月30日 (火)

TOSTEM QDC-18 MIWAラッチボルトのメンテナンス

玄関ドアを開ける時に引っかかり感が出てるようになった。ラッチボルトの動きが悪いようで、メンテナンス実施。

Img08777_small

ネット検索してみるとLIXILからラッチ箱錠として販売されている。結構大きなユニットだ。このラッチ箱錠を外すにはレバーを外す。レバーの固定ネジはカバーに隠されている。カバーは2つの爪ではめ込まれている。この2つの爪を2本のマイナスドライバーでこじる事で外すことができた。

カバーの爪を外してカバーをスライドしたところ。
Img08779_small

カバー固定爪はこんな感じなっている。この2つの爪をマイナスドライバーで広げて外す。
Img08781_small

カバーを外すとレバー固定ネジが2本見える。このネジを緩めることでレバーを外すことができる。
Img08783_small

レバーを外したところ。レバー取り外しに先立って、ドアが閉まらないようにストッパーを設置した。レバーを外してラッチ箱錠が残っている状態でドアが閉まったら開けられなくなってしまう。
Img08784_small

この後、ラッチ箱錠を外す。
Img08786_small

ラッチ箱錠の隙間からシリコンスプレーをかける。オイル系の潤滑油は後々ゴミ付着等が発生したりするから避けた。
Img08789_small

ラッチ箱錠とレバーを元に戻す。
Img08787_small

最後にカバーを戻して作業完了。
Img08788_hdr_small

メンテナンス後、引っかかり感はなくなって動きはスムーズになった。

2024年3月23日 (土)

超昔のメインアンプのスピーカー保護スイッチの製作

今から50年近く前に作ったアンプが生家の押し入れから出てきた。恐る恐る電源を入れてみたらちゃんと動いた!!でも(記憶では製作時から)電源投入時に出力端子に大きな直流電流が流れるようで、スピーカーが壊れてしまいそう。で、スピーカー出力のオン・オフをするスイッチを作った。

これが押し入れから出てきたアンプ。

Img07508_hdr_small Img07509_small

町田のサトー電気で買ってきたケースはこれ。CA-60W、809円。
Img07895_small

このボックスにワンタッチ端子とスイッチを取り付ける。まずは端子を取り付ける位置を紙に書いてみる。
Img07896_small

これをケースに貼り付ける。
Img07897_small

センターポンチで印をつけてからドリルで穴を開ける。
Img07900_small

ワンタッチ端子が取り付けられるか確認。ワンタッチ端子は台湾製で132円。それを2個。
 Img07901_hdr_small

取り付けに特に問題は内容なので、次に配線をする。ワンタッチ端子の半田付け端子部分の根元は絶縁用に熱収縮チューブを取り付けた。大型トグルスイッチも台湾製で176円。
Img07903_small

中身はいたって簡単だけれど、これでスピーカーが保護できる。

早速50年前のアンプの上に乗せて使ってみる。アンプのパワーをオンしてから、3つ数えてこのスイッチをオンにする。アンプ電源を切る時も、まずはこのスイッチをオフにしてからアンプをオフする。
Img07905_small

1250円位で作ることができた。コードや圧着端子は手持ちを使用。これで一安心。

2024年3月12日 (火)

ワルボロWYJキャブレターの構造

ワルボロWYJ型キャブレターのオーバーホールをしたので、ついでにその構造の備忘録。

Img07564_hdr_small

ワルボロキャブレターは草刈り機とかに使われてる。燃料タンクはエンジンの下側にある。つまり燃料ポンプが装備されているわけだ。そのポンプの駆動源はエンジンの吸入吐出圧力を使っている。

エンジンの吸入吐出圧力はエンジンからキャブレターの矢印部分に与えられる。

Img07666_small

この吸入吐出圧力は脈動波としてのキャブレターのダイヤフラムを動かす。3がダイヤフラム室で吸入吐出圧力は矢印部分から入ってくる。

Img07667_small_20240312142101

このダイヤフラムの脈動によって3のポンプが動作し、燃料は1から4に向かって流れる。

Img07668_small

ダイヤフラムを被せるとこんな感じになる。吸入吐出圧力によって3部分のダイヤフラムが脈動する。ポンプとして動作させるために2と4の部分が逆止弁となって流れ方向を一方通行にしている。

Img07669_small

ここに厚みのあるガスケットを被せ反対側のキャブレタ部との隙間によって流路を確保している。

Img07671_small
左がポンプ部で右がキャブレタ部。
Img07672_hdr_small

ポンプ部の反対側このようになっていて真ん中に燃料貯がある。ダイヤフラムポンプによる燃料流は4から燃料貯に流入する。この流入量を4にセットするニードル弁で制御する。ここに入った燃料は5を通してメインジェットから排出される。

Img07675_small

ニードル弁、ニードルレバー等はこんな感じになっている。

Img07678_small

これを組み込むとこんな感じになる。通常はスプリングによってレバー端が持ち上げられ、ニードルを穴に押し込み燃料流入を止めている。

Img07679_small

このレバーを動作させるのがダイヤフラム・メタリングだ。メタリングの真ん中がニードルレバー端を押し上げるとニードルが穴から引っ張り出されて燃料が流れる。

Img07674_small

ダイヤフラム・メタリングはこんな感じで取り付けられる。このダイヤフラム・メタリングがレバーを持ち上げるということは、燃料貯の圧力が低くなったということだ。言い換えると、燃料貯から燃料が吸い出されると圧力が低くなってニードルレバーが押され、その結果ニードルが穴から引っ張り出されるという事だ。これにより、メインジェットから燃料が吸い出されると、その分だけ燃料が燃料貯に流入するよう(燃料貯の燃料量が一定になるよう)に、この部分の機構が動くわけだ。

Img07683_small_20240312144801

燃料貯の燃料は燃料貯中心に配置されているバルブを通してメインジェットに送られる。キャブレターを流れる空気も脈動するので、メインジェットから空気が入って来るのを防ぐため、このバルブが逆流防止をしている。構造はこうだ。5のバルブの中にはゴム板が入っていて、4本の爪でその動きが制限されている。メインジェット圧が高くなるとこのゴム板がポンプ側に押し付けられて逆流を防ぐ。メインジェットから燃料が吸い出されるときは、このゴム板が浮き上がって燃料が流れるが4本の爪でその高さが抑えられる、と言う仕組みのようだ。

Img07692_small

以上のように、燃料貯やダイヤフラムポンプに燃料が充填されていればこのように燃料が流れメインジェットから放出される。この流入経路に燃料を満たすのがプライマリポンプの役目だ。

Img07690_small Img07688_small

プライマリポンプの中にもバルブがある。なお8の穴はダイヤフラム・メタリングの燃料貯の反対側の空気呼吸用の穴だ。

Img07684_small_20240312154001

このバルブの中心の赤いゴムが逆止弁になっている。この赤いゴムの中心は通常は閉じているプライマリーポンプを押しつぶすことで加圧されると燃料が流出する。プライマリーポンプが元に戻る時には負圧が発生するとこのゴム弁は閉じるのでこの穴を燃料は通らない。

Img07696_small

逆止弁の中心は7をとおしてポンプ中心のメタル中心につながり、メタルの外周は6につながっている。プライマリポンプを押しつぶすと圧力によって赤いゴム全体が枠に押し付けられられるので6方向へ燃料が流れるのを阻止するが、元に戻る時には負圧によって赤いゴム全体が枠から外され6を通して燃料が流入する。

Img07693_small

6は燃料貯につながっている。7は燃料排出口に繋がっている。

Img07687_hdr_small_20240312154101
Img07700_small

つまり、プライマリポンプに負圧がかかる(つぶした後に元に戻る)時に、ダイヤフラムポンプ経由で燃料タンクから燃料が吸い上げられる。プライマリポンプをつぶすと燃料排出口に燃料が送られる。プライマリポンプの押しつぶしを繰り返せば、燃料タンクから燃料排出口に向けて燃料流を作り、キャブレター全体を燃料で充填することができるわけだ。

ダイヤフラム・メタリングの燃料貯の反対側は空気になっていて、ダイヤフラム・メタリングの動作に合わせて空気が自由に動かないといけない。この為の呼吸穴が8だ。ここがつまるとダイヤフラム・メタリングは窒息状態になるので動きが鈍くなる。

Img07706_small

以上をまとめると、プライマリーポンプによってダイヤフラムポンプや燃料貯に燃料を充填したあとは、エンジンの吸入吐出圧力によるダイヤフラムポンプ動作によって燃料が燃料タンクから供給されるキャブレターがワルボロキャブレターなわけだ。

2024年2月24日 (土)

Diamond SWR & POWER METER SX-400のメーターランプ交換

SX-400のメーターランプが点灯しなくなった。そこで交換。

Power SWを入れてもSX-400のメーターランプが点灯しなくなった。調べてみるとSX-400はフィラメントランプを使ってるらしい。なので切れるわけだ。しょうがないので交換、といってもフィラメントランプに再び交換するなんてことはしないでLEDに交換することにした。

まずSX-400のカバーを外す。
Img07343_small

カバーを外すとメーターがこんな感じで取り付けられている。メーターはフロントベゼルから飛び出している3つの爪で固定されている。そしてその爪の先端は接着剤で固定されている。接着剤はゴム系っぽい感じで結構柔らかい。
Img07344_hdr_small

ボンドをカッターナイフとニッパーで取り除いて、一つだけで固定されている外側の爪のを外してメーターを後ろに送り出し、奥側の爪の部分を外すという手順でメーター本体を外した。
Img07346_small

メーターが外れるとこんな感じなる。
Img07347_small

悩んだのは透明なメーターカバーの取り外し。見た感じ、爪などの固定機構は確認できない。けれどもカバーが外れない。よくよく見たら透明セロハンテープで固定されていた(赤丸部分)。こりゃわからんね。
Img07348_small

無事メーターカバーが外れた。
Img07349_hdr_small

メーター軸の前にはフィラメントランプが半田付けされている。SX-400の外部電源は12V。テスターで確認するとこのランプ両端の電圧は外部電源とほぼ同じ電圧だった(若干低め)。ちなみに向かって左側がプラス。

手持ちの透明LED(白色LED)に1KΩ抵抗を付けてフィラメントランプの代わりにする。LEDアノードに1KΩ抵抗リードを巻き付けた。これを半田付けする。
Img07350_small

実際にフィラメントランプの両端にLED+抵抗を繋いでみて明るさを確認。十分に明るいと判断した。
Img07351_small

さてさて、フィラメントランプを取り外す。端子がプラスチックのメーターフレーム差さっている。過熱でプラスチックが変形すると困るので、端子をヒートクリックで保護する。
Img07352_hdr_small

ソルダーウィックで半田を吸い取ってからランプリード線を外す。
Img07353_hdr_small

LED+抵抗をランプの代わりに取り付ける。LEDをメーター軸の上に来るようにした。
Img07354_hdr_small

LEDを点灯させてみる。結構良い感じ。メーターパネルが半田カスなどの飛散でよごれたので、ブラシで掃除してメーターカバーを取り付ける。メーターカバーのセロハンテープ取り付けはしなかった。フロントベゼルに爪で固定されるので、特にメーターカバーをテープ固定する必要性は感じなかったし。
Img07355_hdr_small

全体を組み上げて、光具合を確認。なかなかいい。むしろちょっと明るすぎるくらい。
Img07356_small

ということでSX-400の切れたフィラメントランプのLEDへの交換作業は無事終了したのであった。めでたし、めでたし。

2024年2月 4日 (日)

4:1バランの製作

4:1バランを作った。目的は21MHzのデルタループアンテナの実験をするため。

作るに当たってJARLの技術資料を参考にした。ざっくり4:1の原理は、インピーダンスZのコモンモードチョークコイル2個を入力(同軸)側は並列に、出力(アンテナ)側は直列に繋ぐから、入力側はZ/2、出力側は2Zになって、インピーダンス比は1対4になるという事と理解した。

41_20240204150501

トロイダルコアはこの技術資料で使っているFT-114-43が手元にあったのでそれを使用。銅線は0.8mmのポリウレタン銅線/2UEW。
Img07189_small

トロイダルコアに銅線ペアを2セット、コアの半分に5ターンずつ巻く。
Img07175_small

コイル端をカットし、サンドペーパーでウレタン被を剥がし、結線。
Img07180

結線部分の半田付け。
Img07181_small

これをバラン用のケースに取り付ける。出力側両端を200Ω抵抗で終端する。
Img07185_small

4:1バランとして機能することをRig Expertで確認。Img07187_hdr_small Img07188_small

結果は以下の通り。この結果はバランケースの置き方などによって変動するので大体の値としてみる事になるけれども、ほぼ50Ωとなっており4:1バランとして機能していることがわかる。
04022024_101838

完成。
Img07190_small

これでアンテナの製作に進むことができる。

2024年1月28日 (日)

TWELITEでソーラーパワーを使う - その4

蓄電デバイスがどの程度動くのか確認した。

蓄電デバイスがどの程度チャージできているか分からないのでこの結果がどの程度の一般性があるかは分からない。

薄曇りではあったけれども比較的天気の良い日に屋根の上にソーラーパネル付きのTWELITEを置いておいた。

TWELITEを部屋に取り込み段ボール箱を被せて日光を遮った。つまり蓄電デバイスのみでの動作となるわけだ。

Img06914_small

以下にTWELITEのVCC変化をグラフにしてみた。縦軸がVCC(Vx100)、横軸がサンプリングカウントで5秒に1回インクリメントしている。

Twevcc
VCCは明るいところでは3.5V程度あるが、段ボール箱を被せると3V程度に低下する。つまり、蓄電デバイス単独となるとVCCは3Vになるということだ。このあと徐々に電圧は低下していく。大体2.6V程度でTWELITE自体がPORしてしまう。その時のサンプリングカウントは400だ。つまり400 x 5秒 = 2000秒 = 33.3分。

結果:蓄電デバイス1.5F、送信インターバル5秒では暗所で約33分は動作した

TWELITE DIPの送信インターバルが5秒だと約33分程度は蓄電デバイス(1.5F)で動作することが分かった(少なくともこの建付けでは)。

ちなみにここのデータ取りは以下のPythonコードで行った。TWELITEからの送信データをCSVにしてファイルに書き出している。上記のグラフはそのCSVをエクセルでグラフ化したもの。

ダウンロード - twelitemonitor1.py

次は蓄電デバイス3.5Fで実験してみる。

Img06915_small

電気二重層コンデンサを1.5Fから3.5Fに差し替えて実験を行った。まずローラーパネルが日光に当たるように一日外に出した。十分に充電と判断し、陽射しが残っている間にTWELITEを室内に取り込み段ボールで蓋をした。

段ボールを被せてから917カウント後にTWELITEはPORした。
917 x 5秒 = 4585秒 = 76分

Twevcc35f

1.5F : 33分
3.5F : 73分
-----   -----
2.3倍  2.2倍

この2つのサンプルではキャパシティ容量増加比と動作時間増加比はほぼ同じとなった。

次は送信インターバルを5分 = Sleep Dur 300,000ms(今までは5秒だったので60倍)にして発電停止後の動作時間を計ってみる。

Dur300000

1.5Fについて、Sleep Duration 300,000秒、すなわち5分で実験してみた。結果は約50分。横軸はTWELITEのCounterで92で遮光した。で、102が最後のログとなっていた。つまり102-92=10 10x5分で50分。誤差は5分はある。5秒インターバルで33分だった。思いの外時間が伸びなかった(2倍にもなっていない)。
15fdur30k

Sleep Durationを変更しても動作時間が伸びないということは、TWELITE以外の消費電力が多い可能性を示唆している。今回の測定ではADT7410温度センサーモジュールを使っている。

Img07200

このモジュールが怪しい。スペックをみると210uA(Typ)とある。これは常時通電モードの消費電流。ADT7410はシャットダウンモードを供えていてそちらは2uAだ。TWELITEではDevice ModeとしてADT7410を設定しているが、TWELITEのApp_TagがどのモードでADT7410にセットしているかわからない。ちなみにDefaultは常時通電モード。

とりあえずADT7410を取り外し、TWELITEのDevice Modeをアナログセンサーモード0x10(内蔵ADCレベルの取得)に設定して再テストすることにした。ちなみにDevice ModeをADT7410(0x30)にセットしたままでADT7410だけ取り外すとTWELITEは動作しない(多分ADT7410とコミュニケーションできないから)。電気二重層コンデンサは1.5F、Sleep Durationは5分(30,000msec)。

結果は劇的だった。33.16時間。Count=37からスタートして435まで(5min/count)。
(435-37)*5/60 = 33.16 hours
途中PCをスリープにしたので目盛りでCount=104から210までは飛んでいる。

Twelite_20240205091401

これなら24時間を大きく超えているので、天候が良い日が続けば24時間稼働が可能だ。電気二重層コンデンサを3.5Fに交換すれば単純に2倍の時間は動作すると予想されるので66時間(約2日半)は動作すると思われる。

この事はTWELITE動作時間においてセンサー回路の設計がとても重要であることを示唆している。

2024年1月26日 (金)

TWELITEでソーラーパワーを使う - その3

秋月電子からソーラーモジュールと電気二重層コンデンサ1.5F3.5Fが届いた。

Img06891_small

まずはソーラーモジュールからテストしてみた。ソーラーモジュールはSHARP製の300mWモジュールだ。これにC基板が付属したものを購入した。C基板が必要かどうか分からなかったので(でもセットで売ってるんだから理由があるのでは?って思い)とりあえずC基板付属を調達してみた。いろいろ考えたが結局C基板付属の意味が見いだせなかった。

Img06892_small

ソーラーモジュールに出力線を半田付け。

Img06893_small

ショート防止のために養生テープを貼り付けた。ガムテープだと剥がすのが大変かと思い、比較的やさしい接着力の養生テープを採用。

Img06894_small

ソーラー電源管理モジュールに接続した。

Img06896_small

既に日没後だったのでまずはLEDランプで動作確認。

Img06895_small

オシロでみてみると2.9V程度の出力が出ている。これはかなり強力だ。

Ds1z_quickprint1_20240126194501

LEDランプを消してみると急速に2Vまで電圧低下する。これはソーラー電源管理モジュール内蔵の220uFの放電の様子を見ているんだと思う。2.0VになるとTWELITEがOFFになるので暫く2.0Vで水平飛行をする。

Ds1z_quickprint2_20240126194501

しかし、耐え切れなくてなって完全放電するみたい。

Ds1z_quickprint3_20240126194501

放電が進んでからLEDランプを点灯させると一瞬にして2.9Vまで回復する(当然か)。

Ds1z_quickprint4

ということで300mWのモジュールは結構パワーがありそうだ。次は電気二重層コンデンサを接続して蓄電をしてみる。

その前にちょっと特記すべき現象に遭遇した。LEDランプだけでTWELITEが動作するような書き方を上でしたけれど、どうもそう簡単ではないようだ。ちなみに上の試験はまだ明るいうち(外からの光が窓越しにはいってきていて、その上でLEDランプをつけていた)に実行したモノだった。夜になって外の明かりが無くなってLEDランプだけになったら様子は違った。

LEDランプだけだとTWELITEの電源電圧はこんな感じで振れてしまった。① おそらく電圧が上昇してTWELITEに給電できる電圧(オシロでは2.6V位か)に到達してTWELITEの電源がONになるけれども ②発電量よりも供給量の方が多く急激に電圧低下(220uFが放電してまう)を起こしTWELITEをOFFにする。③ また受光による充電による給電がはじまって②にもどる、、、、というサイクルが起きてるのではないかと思う。

Ds1z_quickprint1_20240127083201

Ds1z_quickprint4_20240127083701

LEDランプの発光量を弱にして(TWELITEが再起動しないほど発電量を下げて)電圧が降下した後、LEDランプに加えて昔ながらの豆電球懐中電灯の光を当ててやると、発電量が増加するがその過程で一瞬同様の事象が発生する。つまり電圧が過渡期で発電量が弱い場合にこのような発振的な事象が発生するんだと思う。

そんなこんなで電気二重層コンデンサ1.5Fを付けてみた。

Img06898_small

朝日が出る前に窓際に一式をセットした。

Img06899_small
日光が当たってきた。ガラスの関係で室内にはソフトな光が入ってくる。
Img06901_hdr_small

 

Img06904_small

光の強さによってTWELITE VCCは様子が変化した。光が強くなると高い周波数のノイズが入るようになった。電圧は大体3.2V位になっている。10分程光に当てた状態でソーラーパネルに遮蔽を被せるとノイズは乗るが電圧は3.2Vあたりで安定している。電気二重層コンデンサに充電がされているようだ。

朝日が当たる前:
Ds1z_quickprint1_20240127084801
薄っすらと光が当り始める直前:
Ds1z_quickprint2_20240127084801
朝日がうっすらと当たり始めた時:
Ds1z_quickprint3_20240127084801
しっかりと太陽光が当たっている時:
Ds1z_quickprint4_20240127084801

朝8時55分に外に出してみた。暫く充電をしてみる。

Img06904_small Img06905_small

TWELITEは元気に動いている。
::ts=62
::rc=80000000:lq=78:ct=05F5:ed=810CCAC2:id=0:ba=3650:a1=1792:a2=2467:te=1050
::ts=63
::ts=64
::ts=65
::ts=66
::ts=67
::rc=80000000:lq=78:ct=05F6:ed=810CCAC2:id=0:ba=3480:a1=1792:a2=2467:te=1062
::ts=68
::ts=69
::ts=70
::ts=71
::ts=72
::rc=80000000:lq=78:ct=05F7:ed=810CCAC2:id=0:ba=3650:a1=1789:a2=2467:te=1050
::ts=73
::ts=74
::ts=75
::ts=76
::ts=77
::rc=80000000:lq=75:ct=05F8:ed=810CCAC2:id=0:ba=3470:a1=1792:a2=2467:te=1050
::ts=78
::ts=79
::ts=80
::ts=81
::ts=82
::rc=80000000:lq=78:ct=05F9:ed=810CCAC2:id=0:ba=3650:a1=1789:a2=2467:te=1056
::ts=83

想定外の結果になった。

ログを見ると5時3分位にTWELITEの送信が止まっていた。だいたい4時近くまで陽射しはあり、3時30分位までは斜めからではあるけれど日光が当たっていたと思う。5時3分はまだ明るい時間で、この時間に送信が止まるという事はソーラーパネルの充電電圧が低下してから1時間30分も持たなかったことになる。
Tickカウンター 27535まではct=1B64とインクリメントが続いている。その時の電源電圧2.675V
Tickカウンター 27540ではct=0001とリセットされている。その時の電源電圧は2.630V

::rc=80000000:lq=84:ct=1B63:ed=810CCAC2:id=0:ba=2680:a1=1534:a2=2467:te=0656
::ts=27531
::ts=27532
::ts=27533
::ts=27534
::ts=27535
::rc=80000000:lq=84:ct=1B64:ed=810CCAC2:id=0:ba=2675:a1=1534:a2=2467:te=0656
::ts=27536
::ts=27537
::ts=27538
::ts=27539
::ts=27540
::rc=80000000:lq=84:ct=0001:ed=810CCAC2:id=0:ba=2630:a1=1107:a2=2467:te=0850
::ts=27541
::ts=27542
::ts=27543
::ts=27544
::ts=27545
::ts=27546
::rc=80000000:lq=84:ct=0001:ed=810CCAC2:id=0:ba=2635:a1=1097:a2=2467:te=0612

どうやら電源電圧2.675Vを下回るとTWELITE DIPは電源電圧モニターが働くようだ。

ログが残っている最も過去はおよそ20分前。その時の電源電圧は2.880V。およそ20分かけて2.880Vから2.630Vまで0.25V低下したことになる。

::ts=26327
::rc=80000000:lq=84:ct=1A70:ed=810CCAC2:id=0:ba=2880:a1=1628:a2=2467:te=1075
::ts=26328

ソーラー電源管理モジュールのマニュアルには以下の記載がある。BYPをDO2に接続すれば0.2Vを稼ぐことができる。リニアに低下するわけではないと思うが約15分程度は延命できるとみることもできる。
BYP
TWELITEのDO2に接続します。
Hiにすると、蓄電デバイスとTWE_VCC間へ接続されているダイオードをバイパスします。
蓄電デバイスが2.3Vの状態でTWELITEへ電源を供給すると、ダイオードの電圧降下によりTVE_VCCは約2.0Vになり動作を停止します。バイパスを行うと、蓄電デバイスが約2.0VまでTWELITEを動作できます。
電圧条件は、TWELITEの電圧条件に従います。

どうやら受信データから電源電圧(ba)を取り出してプロットするアプリを作る必要がありそうだ。

2024年1月23日 (火)

TWELITEでソーラーパワーを使う - その2

TWELITE DIPにApp_Tagをインストールできたので、次はTWE-EH SOLARの実験だ。以後ソーラーモジュールと呼ぶ。

Img06838_small

ソーラーモジュールを配線してLEDランプの下に置いてみた。TWELITEは時々(本当に時々)動作する。TWELITEはVCCが2.0V以下では動作しないので発電電圧(TWE_VCC)が2.0を超えないという事だとおもう。

Img06830_small

朝、太陽が出てからソーラーパネルを日光に当ててみた。TWELITEは速攻で動き出した。

Img06833_hdr_small

::ts=44032
::rc=80000000:lq=135:ct=0016:ed=810CCAC2:id=0:ba=3310:a1=0612:a2=2467:te=1562
::ts=44033
::ts=44034
::ts=44035
::ts=44036
::ts=44037
::rc=80000000:lq=132:ct=0017:ed=810CCAC2:id=0:ba=3420:a1=0598:a2=2467:te=1562
::ts=44038
::ts=44039
::ts=44040
::ts=44041
::ts=44042
::rc=80000000:lq=132:ct=0018:ed=810CCAC2:id=0:ba=3340:a1=0634:a2=2467:te=1562
::ts=44043
::ts=44044
::ts=44045
::ts=44046
::ts=44047
::rc=80000000:lq=132:ct=0019:ed=810CCAC2:id=0:ba=3380:a1=0627:a2=2467:te=1562
::ts=44048
::ts=44049
::ts=44050
::ts=44051
::ts=44052
::rc=80000000:lq=132:ct=001A:ed=810CCAC2:id=0:ba=3360:a1=0639:a2=2467:te=1562
::ts=44053
::ts=44054
::ts=44055
::ts=44056
::ts=44057
::rc=80000000:lq=132:ct=001B:ed=810CCAC2:id=0:ba=3350:a1=0624:a2=2467:te=1562
::ts=44058

ソーラーパネルを日陰の状態から日光にあてるとTWE_VCCは3.2V程度まで上がる。

Ds1z_quickprint10

ソーラーパネルを日陰にするとTWE_VCCは徐々に低下していく。階段上になっているのがTWELITEの送信タイミング。この時TWELITEの送信間隔は5秒に設定している。

Ds1z_quickprint12

TWE_VCCが2V程度になるとTWELITEは動いたり動かなかったりする。動くと電圧はドロップし、徐々に回復する。つまり日陰で細々と充電するわけだ。けれども2.0Vを越えられないようだ。

Ds1z_quickprint13

次にVC2を見てみた。マニュアルによるとVC2は蓄電デバイス(デフォルトで220uFコンデンサ、写真アカ丸のC2)の充電電圧モニター出力だ。

Img068611_small

充電電圧モニターこんな感じの鋸状の波形になっている。真ん中の谷はTWELITE動作時。充放電サイクルを繰り返しているんだと思う。

Ds1z_quickprint9

このC2には外部に並列コンデンサを付けることができる。それによって充電デバイス容量を増やすことができるわけだ。以下の写真は外部コンデンサーとして220uFのケミコンを取り付けた様子。

Img068631_small

外部コンデンサー220uFを追加すると充電電圧モニターはこんな感じに変わる。充電容量が増えた分、充放電サイクルが長くなるようだ。

Ds1z_quickprint8

仮に外部コンデンサーを取り付けても日陰になると直ぐにTWE_VCCは2ボルトになってしまう。次は外部蓄電デバイスとして電気二重層コンデンサ、いわゆるEDLCを取り付けて日光が当たらない状態でどのくらいの動作時間が得られるか実験だ。なにしろ1FのEDLCでも220uFの4500倍の静電容量となる。

仮に220uFで送信4回できるならインターバル5秒だと20秒、4500x20= 90000秒、 90000秒は25時間なので、一回充電すれば1日は持つことになる(かな)。

 

より以前の記事一覧